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Abstract

The year 2022 was special in Mathematics because the Fields Medal
prize (that is awarded to Mathematicians under 40, every four years)
was awarded. Among other recipients was the Ukrainian Mathemati-
cian Maryna Viazovska, who became the 2nd woman to win this presti-
gious award (the first being Maryam Mirzakhani receiving Fields Medal
in 2014). Maryna Viazovska has solved the problem of Sphere Packing in
higher dimensions. This note is a brief exposition of her work.1

Introduction

In my childhood days, when I used to get bored in the classroom, I used to
place coins on the desk. The two most common arrangements that I came up
with are shown below. As a Mathematician I am posed with the question that

which of these arrangements is better, that is, which one packs the circles more
tightly than the other. To answer this, I would like to first give the definition
of a lattice as follows.

Definition 1. A periodic arrangement of points is called a lattice.

In order to determine the underlying lattice for each of the arrangements
shown in the figure above, let us draw the vertical and horizontal lines passing
through the centres of the circles in the arrangement on the left (shown partly).
What we obtain as a result is known as the rectangular lattice. In the arrange-
ment on the right, the vertical lines get replaced by lines with a 60 degrees slope
(shown partly). For this reason, the underlying lattice in this case is called the
hexagonal lattice.

1Based on a talk presented at The Black Hole, Islamabad, Pakistan on 17-01-2023.
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Since the arrangements are infinite, we will only consider a finite region of
these arrangements called the fundamental region, and see how many circles are
contained in that fundamental region. So that the density of lattice packing is
defined as follows.

Definition 2. Density of lattice packing =
Area occupied by the circles

Area of the fundamental region

In both the packings, we are assuming the radius=1/2. The fundamental
region for the rectangular lattice is a square with unit area. And the area of
the circle is π/4. Thus the density of rectangular lattice packing is π/4 = 0.78.
We may interpret that in a rectangular arrangement of circles 78% area is being
occupied by the circles. In the case of hexagonal packing, the fundamental
region is a rectangle, and one will have to use Pythagoras’ theorem in order to
determine one of the sides of the rectangle. The density then turns out to be
π/2

√
3 = 0.90, i.e. 90% of the area is being occupied by the circles. This brief

demonstrations helps to show that in two dimensions the “best” way to pack
circles is by using the hexagonal lattice. One can try drawing larger fundamental
regions and they will correspondingly contain more circles, but the density will
remain the same. Some readers may object that the fundamental region in case
of hexagonal packing should be a parallelogram. Again it is a matter of checking
that a parallelogram and a rectangle of same area will contain same amount of
circles, thus keeping the density unchanged.

The corresponding problem in three dimensions is called the sphere packing
problem. The two-dimensional case prepares us to understand the sphere pack-
ing problem in any dimension. Notice that two or more cubes can fill a volume
of space without leaving any gaps between them, but spheres cannot. So the
sphere packing problem asks which lattice packing arranges the spheres in a
given volume without overlapping such that the density is optimal. We would
also like to give the following definition of lattice packing.

Definition 3. A lattice packing of spheres centers the spheres at the lattice
points.

Sphere Packing Problem in Higher Dimensions

In three dimensions, the sphere looks like a ball, but what does the correspond-
ing object look like in four or five or higher dimensions? It is better to settle this
matter before we proceed further. A similar problem is faced when discussing
higher dimensions. We usually label the three dimensions with alphabets x, y, z.
But the alphabets are only 26, whereas it is common in Mathematics to consider
thousand or many more dimensions. So a better practice is to use subscripts
and label dimensions such as x1, x2, x3, . . .. Similarly here, due to lack of jar-
gon, we use the term sphere in its full generality. In three dimensions a sphere
looks like a ball. But since we cannot imagine higher dimensions, so we detach
the image of a ball with the “sphere”, and call the corresponding object in any
dimensions also a sphere. Similarly we understand what is meant by volume
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in three dimensions, so we generalise the same notion to dimensions four and
above.

Now replacing circle by sphere and area by volume in Definition. 2, we can
use that for finding the density of lattice packing in any dimension. Denoting
the volume of an n−dimensional sphere by Vn, we can find it using the following

expressions, Vn = πn/2rn

(n/2)! (for n even) and Vn = πn/2

Γ(n
2 +1)r

n (for n odd). It is fun

and simple to use these formulas as all you need to input is the desired n. For
n = 1, 2, 3 we obtain the familiar looking expressions, V1 = 2r, V2 = πr2, V3 =
4
3πr

2. Let me use this chance to “extend” the generalisation of notions of sphere
and volume to lower dimensions also. For instance note that V2 = πr2, which
is the area of the circle, because two-dimensional volume is area. Similarly the
one dimensional sphere is a straight line, and its volume is simply its length.
For the reader who might be wondering what then is the sphere packing density
in one dimension, imagine that you have got one dimension, and several match
sticks to arrange. The match sticks will fit in perfectly in the one-dimensional
space hence the sphere packing density in one dimension is 100%. Maryna
Viazovska (Fields Medal recipient 2022) has solved the sphere packing problem
for dimensions 8 (independently) and 24 (with collaborators). I only focus on
the eight-dimensional case in this note. Putting n = 8 in the formula above,

V8 =
π4r8

4!
.

Recall that in the two-dimensional case, we analysed the underlying lattice
of the packing, in order to use Definition. 2. Similarly in eight dimensions, we
must know the underlying lattice. The lattice in this case is called the E8 lattice.
It is a very deep topic in both Number Theory and Lie Theory, so I will suffice
with a working definition,

Definition 4. E8 lattice is an even sum lattice.

In order to discuss what is meant by an even sum lattice above, I would
first like to come to a convenient dimension such as three. Now here if the
ordered pairs in the lattice are such that the sum of the components is an
even number, then the lattice is called an even sum lattice. Following are
some example points (1,1,2), (2,4,6), (3,1,0), (1,1,0),. . . . (Of course in eight
dimensions, each point will have eight components such that their sum is even.)
The length of the vectors emanating from (0,0,0) to the above mentioned points
is

√
6,
√
56,

√
10,

√
2 respectively. Hence we notice that in general the length

of vectors in an even sum lattice will always be of the form
√
2k, where k is a

positive integer. The same is true for E8 (see References). Which tells us that
the shortest vector present in E8 is of length

√
2.

The significance of this number is that since a lattice packing of spheres
centres the spheres at the lattice points, we cannot allow the sphere to have its
centre at, say, the midpoint of two lattice points. So only the lattice points will
serve as the centres for the spheres, and since the spheres cannot overlap, thus
only two spheres can occupy space between any two lattice points. Thus the
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radius of the sphere will be half of the shortest vector of the lattice. Thus for
E8, the radius of the sphere is (1/2)(

√
2) = 1/

√
2. Substituting r = 1/

√
2 in

the expression for V8, we get

V8 = π4/384.

We also need the volume of the fundamental region to find the density of
the lattice packing. For dimension 8, the volume of the fundamental region
turns out to be unity (In fact, E8 is called a unimodular lattice). This can be
understood by realising that the volumes can be calculated using determinants,
i.e., if one knows the basis vectors of the lattice, then calculating the volume
is not difficult. (For example, use internet to find the area of parallelogram
formed by vectors (1,3) and (4,2), and then calculate using determinant, the
answer in both ways will be the same.) It is amusing that we neither know
what an eight-dimensional ball looks like, nor what the eight-dimensional space
looks like, but we know that the sphere packing density in eight dimensions is
25%.

Work of Maryna Viazovska

Now we can present the statement of the main theorem of Maryna Viazovska:
the E8 lattice achieves the optimal sphere packing density in eight-dimensional
space, namely π4/384.

Just as in the case of two dimensions, other choices for lattices are also
possible in eight-dimensions. The corresponding densities can also be easily
found. So what is the problem then? The problem is to prove that a certain
lattice has the optimal density.

In order to prove that E8 is the densest packing in eight dimensions, as
claimed in the theorem of Maryna, the pioneering researcher in this field, Henry
Cohn had proved the existence of a function, which if satisfied the following
properties, then the statement of Maryna’s theorem is true:
(i) f(x) ≤ 0 for all x ≥

√
2,

(ii)f̂(y) ≥ 0 for all y.

Where f̂ is the Fourier transform of the function f . Such a function was sup-
posed to be impossible to find. And there is a reason for that pessimism. Let
me explain this with the help of an example. Light is composed of different
frequencies. In order to find how much amount of which frequencies is present
in a particular light signal, we need the Fourier transform of the light signal.
That is if the light signal is presented by the function f(t), then its Fourier

transform will be presented by f̂(ω). Here t is the time and ω is the frequency.
In context of Fourier transform, a time interval and a frequency interval cannot
simultaneously be precisely defined, mathematically ∆t∆ω ≥ 1

4 . For instance,
if ∆t = 1/2, then ∆ω cannot be less than 1/2. If ∆ω = 1, then ∆t cannot be
less than 1/4, etc. This is called Uncertainty Principle, and is the obstacle in
finding the function proposed by Cohn.
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When Maryna was working on the construction of the required function, she
simplified a calculation by discarding some terms. But to justify this step, she
demanded the function to vanish at the lattice points because there is no harm in
discarding terms that are 0 anyway. In summary, Maryna was confronted with
several conditions; the function should have such and such values; its Fourier
transform should have such and such values; and it must be zero at the lattice
points. But what was the function that had all these features?

I will not present the detailed derivation of the function that satisfies these
conditions, because that would involve Number Theory and Modular Forms.
But I will show the graph of that function, and describe its basic characteristics
visible directly from the graph. The graph of f and f̂ is presented below. The
graphs touch the horizontal axis at certain points. These points coincide with
the lattice points. So in the graph of f , not only the roots are brought about

by choice, but notice that at x =
√
2, the curve crosses through the horizontal

axis, while at other roots, the curve only touches the horizontal axis and returns
back. This is because the first condition in Cohn’s theorem requires that f ≤ 0
beyond

√
2. The root at

√
2 is called a single root. While the other roots are

called double roots, and are different from single root in that they are not only
the roots of f , but also of the derivative of f . Similarly f̂ stays above the
horizontal axis as per the second condition in Cohn’s theorem.

Though the function involves modular forms, but there is a trigonometric
factor multiplied to the original function that is significant, and is easy to un-
derstand. This factor is −4 sin2

(
πr2/2

)
. (It can also be visualised by feeding

it in wolframalpha.com.) If one plots this as a function of r, the graph that
emerges shares a few features with the graph of f . For instance the graph is
zero at the lattice points of E8. The graph lies below the horizontal axis for all
values, due to the presence of minus sign.
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